

Trophic Cascades in Great Lakes Wolves

Tom Rooney, Ramana Callan, Krystle Bouchard, and Nate Nibbelink

Summary of two research projects

Ramana Callan, PhD University of Georgia

Krystle Bouchard, MS Wright State University

Wisconsin's Understory Plant Communities

- Local losses in plant species diversity
- Regional recruitment failure of conifers
- N. WI White-tailed deer populations
 - pre-settlement: < 10/mi²
 - current: 10-40/mi²

Wisconsin's Wolves

- Predicted to contribute to the conservation of regional biodiversity
- Through direct impacts on whitetailed deer, wolves are predicted to trigger additional indirect impacts on plant communities

Wolves and Trophic Cascades

Wolves and Trophic Cascades

Predators can indirectly influence plants by:

- Predation: Density-mediated indirect interactions (Death Effects)
- Predation Risk: Trait-mediated indirect interactions
 - →Behaviorally mediated trophic cascades (Fear Effects)

Wolf-moose-balsam fir system on Isle Royale

McLaren and Peterson 1994

(Photo credit: Michigan Technological University)

Trophic interactions in Wisconsin forests

Wolves and white-tailed deer

- 400,000 deer; 690 wolves regional Death Effects unlikely
- Distribution of deer in MN found to be at margins of wolf territories → buffer zones between packs act as refugia

Death and Fear Effects possible

 Wolves are predicted to alter foraging behavior by white-tailed deer (i.e. deer increase vigilance and movement)

Fear Effects possible

DEER MORTALITY IN WISCONSIN'S NORTHERN AND CENTRAL FORESTS

Source: Wisconsin Department of Natural Resources

^{*} the range estimate is based on 5-15% of the 2009 winter standing deer herd for a moderate winter.

Callan: Northern white cedar wetlands

- High Plant Species Diversity
- Historically used by deer as winter "yards"

Objective

Detect and characterize differences in vegetation between areas occupied by wolves and areas unoccupied by wolves

Experimental Approach

Overlay Wisconsin DNR wolf territory data

- characterize "high wolf impact areas" (8-10 years of wolf occupancy) and "low wolf impact areas" (0-3 years of wolf occupancy)

Cedar Stand Site Selection

Research Questions

- (1) Is plant species richness higher in white cedar wetlands occupied by wolves?
 - species richness by vegetation growth form: Tree, Shrub, Forb, Fern, Grass
- (2) At what scale are these differences detectable?
 0.01m², 0.1m², 1m², 10m², 100m², 1,000m²

Hypothesis: Spatial Scale

Hypotheses: Vegetation Growth Forms

High Impact Wolf Areas should display:

- 1) ≈ Tree species richness and % cover
- 2) ↑ Shrub and Forb species richness
- 3) ↓ Grass and Fern % cover

Results: Biodiversity of white cedar wetlands

Trees	23
Shrubs	31
Forbs and Vines	100
Ferns and Fern allies	17
Sedges	16
Grasses and Rushes	8
Non-natives	4

Tree Species Richness

Forb Species Richness

Shrub Species Richness

Results: Percent Cover

Hypothesis 3 Partially Supported: ↓ Grass and Fern % cover in high wolf impact areas

Low wolf impact area

High wolf impact area

Response of browse-sensitive species in low and high wolf impact areas

Results: Select sensitive species

Wild sarsaparilla (Aralia nudicaulis)

Nodding trillium (Trillium cernuum)

Bouchard: Upland forest wildflowers

Focus on 3 deer browse indicator species

Objective

Detect and characterize differences in vegetation across a wolf recolonization gradient

Research Questions

(1) Does indicator plant size increase with time since wolf recolonization?

(2) How long does it take before wolf effects become detectable?

Experimental Approach

- (1) Overlay Wisconsin DNR wolf territory data
 - wolves present 12-13 years
 - wolves present 4-6 years
 - wolves absent
- (2) Sites on national and state forest land; matched stand types (mature forest)

Hypothesis: Plant Size

(1) Mean indicator plant size increase with time since wolf recolonization, but does not resemble "deer-free" exclosures

Results: Mixed Effects After 4-6 Years, Consistent Effects After 12-13 Years

Results: Mixed Effects After 4-6 Years, Consistent Effects After 12-13 Years

No wolves versus wolves for 4-6 years

No wolves versus wolves for 12-13 years

Summary of Results

- Species richness of forbs and shrubs was greater in high wolf impact areas and evident at specific scales:
 - » 1m²-10m² for forbs
 - » 10m²-400m² for shrubs
- % cover of ferns was lower in high wolf impact areas
- Browse indicator species reveal reduced browsing pressure in high wolf impact areas

Summary of Results

- In forests and forested wetlands, trophic cascades:
 - Exist
 - Are subtle
 - Require about a decade before they are apparent
 - Do not resemble "deer free" conditions
 - Might become more pronounced with time

Acknowledgements

Collaborators

Adrian Wydeven, Jane Wiedenhoeft (Wisconsin DNR) Corey Raimond and Clare Frederick (Field Assistants) Warren Keith Moser (Forest Service)

